Measurement of time taken by the Formosanus termite, Coptotermes formosanus, to pass tunnel intersections
SookJungKu; Nan-Yao Su, Sang-Hee Lee
|
JOURNAL OF INSECT SCIENCE
12
(2012)
Subterranean termites build complex tunnel networks below ground for foraging. During the foraging activity, termites may encounter a considerable number of tunnel intersections. When they encounter the intersections, they spend some time gathering information for making a decision regarding their moving direction by anntenation. The spent time is likely to be directly connected to the termites’ survival because depending on the time, the total traveling time taken by the termites for transferring food resources from the site of food to their nest can vary significantly because of many intersections. In the present study, we measured the time spent by a termite to pass an intersection with widths of W1 and W2 (W1 and W2: 2, 3, or 4 mm); τL, τR, and τS are the passing time for turning left, turning right, and going straight, respectively. W1 represents the width of the tunnel in which the termites advanced, and W2 represents the width of the other tunnel encountered by the advancing termites. For the combinations of W1 and W2, (W1, W2) = (2, 2), (3, 3), (2, 3), (2, 4), (3, 4), and (4, 3), the values of τL, τR, and τS in each case were statistically equal. For (W1, W2) = (3, 2), (4, 2), and (4, 4), τS was shorter than τL and τR in each case. The experimental results are briefly discussed in relation to the termite foraging efficiency.
- 초록
Subterranean termites build complex tunnel networks below ground for foraging. During the foraging activity, termites may encounter a considerable number of tunnel intersections. When they encounter the intersections, they spend some time gathering information for making a decision regarding their moving direction by anntenation. The spent time is likely to be directly connected to the termites’ survival because depending on the time, the total traveling time taken by the termites for transferring food resources from the site of food to their nest can vary significantly because of many intersections. In the present study, we measured the time spent by a termite to pass an intersection with widths of W1 and W2 (W1 and W2: 2, 3, or 4 mm); τL, τR, and τS are the passing time for turning left, turning right, and going straight, respectively. W1 represents the width of the tunnel in which the termites advanced, and W2 represents the width of the other tunnel encountered by the advancing termites. For the combinations of W1 and W2, (W1, W2) = (2, 2), (3, 3), (2, 3), (2, 4), (3, 4), and (4, 3), the values of τL, τR, and τS in each case were statistically equal. For (W1, W2) = (3, 2), (4, 2), and (4, 4), τS was shorter than τL and τR in each case. The experimental results are briefly discussed in relation to the termite foraging efficiency.
- 초록
Subterranean termites build complex tunnel networks below ground for foraging. During the foraging activity, termites may encounter a considerable number of tunnel intersections. When they encounter the intersections, they spend some time gathering information for making a decision regarding their moving direction by anntenation. The spent time is likely to be directly connected to the termites’ survival because depending on the time, the total traveling time taken by the termites for transferring food resources from the site of food to their nest can vary significantly because of many intersections. In the present study, we measured the time spent by a termite to pass an intersection with widths of W1 and W2 (W1 and W2: 2, 3, or 4 mm); τL, τR, and τS are the passing time for turning left, turning right, and going straight, respectively. W1 represents the width of the tunnel in which the termites advanced, and W2 represents the width of the other tunnel encountered by the advancing termites. For the combinations of W1 and W2, (W1, W2) = (2, 2), (3, 3), (2, 3), (2, 4), (3, 4), and (4, 3), the values of τL, τR, and τS in each case were statistically equal. For (W1, W2) = (3, 2), (4, 2), and (4, 4), τS was shorter than τL and τR in each case. The experimental results are briefly discussed in relation to the termite foraging efficiency.
More