본문 바로가기 주메뉴 바로가기
검색 검색영역닫기 검색 검색영역닫기 ENGLISH 메뉴 전체보기 메뉴 전체보기

논문

Feasibility of deep learning-based noise and artifact reduction in coronal reformation of contrast-enhanced chest computed tomography

등록일자 :

https://doi.org/10.1097/RCT.0000000000001326

  • 저자 Jae-Kwang Lim,Eun-Ju Kang,Ji Won Lee,박형석,전기완
  • 학술지Journal of Computer Assisted Tomography (0363-8715), 46(4), 593 ~ 603
  • 등재유형SCIE
  • 게재일자 20220701
This study aimed to evaluate the feasibility of a deep learning method for imaging artifact and noise reduction in coronal reformation of contrast-enhanced chest computed tomography (CT).

이 페이지에서 제공하는 정보에 대해 만족하십니까?