본문 바로가기 주메뉴 바로가기
검색 검색영역닫기 검색 검색영역닫기 ENGLISH 메뉴 전체보기 메뉴 전체보기

논문

Exact artificial boundary conditions for continuum and discrete elasticity

https://doi.org/10.1137/050644252

  • 저자Lee, Sunmi, Caflisch, Russel E., Lee, Young-Ju
  • 학술지SIAM Journal on Applied Mathematics 66/5
  • 등재유형
  • 게재일자(2006)


For the continuum and discrete elastic equations, we derive exact artificial boundary conditions (ABCs), often referred to as transparent boundary conditions, that can be applied at a planar interface below which there are no forces. Solution of the elasticity equations can then be performed using this interface as an artificial boundary, often with greatly reduced computational effort, but without loss of accuracy. A general solvability requirement is presented for the existence of an artificial boundary operator for discrete systems (such as discrete elasticity) on an unbounded (semi-infinite) domain. The solvability requirement is validated by introducing a sum-of-exponentials ansatz for the solution below the artificial boundary. We also derive a new expression for the total energy for the system, involving only the region above the artificial boundary. Numerical examples are provided to confirm and illustrate the accuracy and effectiveness of the results.


For the continuum and discrete elastic equations, we derive exact artificial boundary conditions (ABCs), often referred to as transparent boundary conditions, that can be applied at a planar interface below which there are no forces. Solution of the elasticity equations can then be performed using this interface as an artificial boundary, often with greatly reduced computational effort, but without loss of accuracy. A general solvability requirement is presented for the existence of an artificial boundary operator for discrete systems (such as discrete elasticity) on an unbounded (semi-infinite) domain. The solvability requirement is validated by introducing a sum-of-exponentials ansatz for the solution below the artificial boundary. We also derive a new expression for the total energy for the system, involving only the region above the artificial boundary. Numerical examples are provided to confirm and illustrate the accuracy and effectiveness of the results.

이 페이지에서 제공하는 정보에 대해 만족하십니까?