The competition graph of a digraph D is a (simple undirected) graph which has the same vertex set as D and has an edge between two distinct vertices x and y if and only if there exists a vertex v in D such that (x, v) and (y, v) are arcs of D. For any graph G, G together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number k(G) of a graph G is the smallest number of such isolated vertices. Computing the competition number of a graph is an NP-hard problem in general and has been one of the important research problems in the study of competition graphs. Opsut [1982] showed that the competition number of a graph G is related to the edge clique cover number θ E (G) of the graph G via θ E (G) − |V(G)| + 2 ≤ k(G) ≤ θ E (G). We first show that for any positive integer m satisfying 2 ≤ m ≤ |V(G)|, there exists a graph G with k(G) = θ E (G) − |V(G)| + m and characterize a graph G satisfying k(G) = θ E (G). We then focus on what we call competitively tight graphs G which satisfy the lower bound, i.e., k(G) = θ E (G) − |V(G)| + 2. We completely characterize the competitively tight graphs having at most two triangles. In addition, we provide a new upper bound for the competition number of a graph from which we derive a sufficient condition and a necessary condition for a graph to be competitively tight.
The competition graph of a digraph D is a (simple undirected) graph which has the same vertex set as D and has an edge between two distinct vertices x and y if and only if there exists a vertex v in D such that (x, v) and (y, v) are arcs of D. For any graph G, G together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number k(G) of a graph G is the smallest number of such isolated vertices. Computing the competition number of a graph is an NP-hard problem in general and has been one of the important research problems in the study of competition graphs. Opsut [1982] showed that the competition number of a graph G is related to the edge clique cover number θ E (G) of the graph G via θ E (G) − |V(G)| + 2 ≤ k(G) ≤ θ E (G). We first show that for any positive integer m satisfying 2 ≤ m ≤ |V(G)|, there exists a graph G with k(G) = θ E (G) − |V(G)| + m and characterize a graph G satisfying k(G) = θ E (G). We then focus on what we call competitively tight graphs G which satisfy the lower bound, i.e., k(G) = θ E (G) − |V(G)| + 2. We completely characterize the competitively tight graphs having at most two triangles. In addition, we provide a new upper bound for the competition number of a graph from which we derive a sufficient condition and a necessary condition for a graph to be competitively tight.