본문 바로가기 주메뉴 바로가기
검색 검색영역닫기 검색 검색영역닫기 ENGLISH 메뉴 전체보기 메뉴 전체보기

논문

Experimental implementation of maximally synchronizable networks

https://doi.org/10.1016/j.physa.2015.12.086

  • 저자R. Sevilla-Escoboza (J.M.Buldu, S.Boccaletti, D.Papo, D.-U. Hwang, G.Huerta-Cuellar, R.Gutierrez)
  • 학술지Physica A 448
  • 등재유형
  • 게재일자(2016)


Maximally synchronizable networks (MSNs) are acyclic directed networks that maximize synchronizability. In this paper, we investigate the feasibility of transforming networks of coupled oscillators into their corresponding MSNs. By tuning the weights of any given network so as to reach the lowest possible eigenratio λN/λ2 , the synchronized state is guaranteed to be maintained across the longest possible range of coupling strengths. We check the robustness of the resulting MSNs with an experimental implementation of a network of nonlinear electronic oscillators and study the propagation of the synchronization errors through the network. Importantly, a method to study the effects of topological uncertainties on the synchronizability is proposed and explored both theoretically and experimentally.


Maximally synchronizable networks (MSNs) are acyclic directed networks that maximize synchronizability. In this paper, we investigate the feasibility of transforming networks of coupled oscillators into their corresponding MSNs. By tuning the weights of any given network so as to reach the lowest possible eigenratio λN/λ2 , the synchronized state is guaranteed to be maintained across the longest possible range of coupling strengths. We check the robustness of the resulting MSNs with an experimental implementation of a network of nonlinear electronic oscillators and study the propagation of the synchronization errors through the network. Importantly, a method to study the effects of topological uncertainties on the synchronizability is proposed and explored both theoretically and experimentally.

이 페이지에서 제공하는 정보에 대해 만족하십니까?