본문 바로가기 주메뉴 바로가기
검색 검색영역닫기 검색 검색영역닫기 ENGLISH 메뉴 전체보기 메뉴 전체보기

논문

DIVIDED DIFFERENCES AND POLYNOMIAL CONVERGENCES

https://doi.org/10.12941/jksiam.2016.20.001

  • 저자PARK, SUK BONG (YOON, GANG JOON , LEE, SEOK-MIN)
  • 학술지Journal of the Korean Society for Industrial and Applied Mathematics 20
  • 등재유형
  • 게재일자(2016)


Ultrasound imaging is a widely used tool for visualizing human body’s internal organs and quantifying clinical parameters. Due to its advantages such as safety, noninvasiveness, portability, low cost and real-time 2D/3D imaging, diagnostic ultrasound industry has steadily grown. Since the technology advancements such as digital beam-forming, Doppler ultrasound, real-time 3D imaging and automated diagnosis techniques, there are still a lot of demands for image quality improvement, faster and accurate imaging, 3D color Doppler imaging and advanced functional imaging modes. In order to satisfy those demands, mathematics should be used properly and effectively in ultrasound imaging. Mathematics has been used commonly as mathematical modelling, numerical solutions and visualization, combined with science and engineering. In this article, we describe a brief history of ultrasound imaging, its basic principle, its applications in obstetrics/gynecology, cardiology and radiology, domestic-industrial products, contributions of mathematics and challenging issues in ultrasound imaging.


Ultrasound imaging is a widely used tool for visualizing human body’s internal organs and quantifying clinical parameters. Due to its advantages such as safety, noninvasiveness, portability, low cost and real-time 2D/3D imaging, diagnostic ultrasound industry has steadily grown. Since the technology advancements such as digital beam-forming, Doppler ultrasound, real-time 3D imaging and automated diagnosis techniques, there are still a lot of demands for image quality improvement, faster and accurate imaging, 3D color Doppler imaging and advanced functional imaging modes. In order to satisfy those demands, mathematics should be used properly and effectively in ultrasound imaging. Mathematics has been used commonly as mathematical modelling, numerical solutions and visualization, combined with science and engineering. In this article, we describe a brief history of ultrasound imaging, its basic principle, its applications in obstetrics/gynecology, cardiology and radiology, domestic-industrial products, contributions of mathematics and challenging issues in ultrasound imaging.

이 페이지에서 제공하는 정보에 대해 만족하십니까?