본문 바로가기 주메뉴 바로가기
검색 검색영역닫기 검색 검색영역닫기 ENGLISH 메뉴 전체보기 메뉴 전체보기

논문

Immersed finite element method for eigenvalue problem

https://doi.org/10.1016/j.cam.2016.09.035

  • 저자Seungwoo Lee, Do Y.Kwak, Imbo Sim
  • 학술지Journal of computational and applied mathematics 313
  • 등재유형
  • 게재일자(2017)

We consider the approximation of elliptic eigenvalue problem with an interface. The main aim of this paper is to prove the stability and convergence of an immersed finite element method (IFEM) for eigenvalues using Crouzeix–Raviart P1-nonconforming approximation. We show that spectral analysis for the classical eigenvalue problem can be easily applied to our model problem. We analyze the IFEM for elliptic eigenvalue problems with an interface and derive the optimal convergence of eigenvalues. Numerical experiments demonstrate our theoretical results.

We consider the approximation of elliptic eigenvalue problem with an interface. The main aim of this paper is to prove the stability and convergence of an immersed finite element method (IFEM) for eigenvalues using Crouzeix–Raviart P1-nonconforming approximation. We show that spectral analysis for the classical eigenvalue problem can be easily applied to our model problem. We analyze the IFEM for elliptic eigenvalue problems with an interface and derive the optimal convergence of eigenvalues. Numerical experiments demonstrate our theoretical results.

이 페이지에서 제공하는 정보에 대해 만족하십니까?