본문 바로가기 주메뉴 바로가기
검색 검색영역닫기 검색 검색영역닫기 ENGLISH 메뉴 전체보기 메뉴 전체보기

논문

Enumeration on graph mosaics

https://doi.org/10.1142/S0218216517500328

  • 저자Kyungpyo Hong
  • 학술지Journal of Knot Theory and Its Ramifications 26
  • 등재유형
  • 게재일자(2017)

Since the Jones polynomial was discovered, the connection between knot theory and quantum physics has been of great interest. Lomonaco and Kauffman introduced the knot mosaic system to give a definition of the quantum knot system that is intended to represent an actual physical quantum system. Recently the authors developed an algorithm producing the exact enumeration of knot mosaics, which uses a recursion formula of state matrices. As a sequel to this research program, we similarly define the (embedded) graph mosaic system by using 16 graph mosaic tiles, representing graph diagrams with vertices of valence 3 and 4. We extend the algorithm to produce the exact number of all graph mosaics. The magnified state matrix that is an extension of the state matrix is mainly used.

Since the Jones polynomial was discovered, the connection between knot theory and quantum physics has been of great interest. Lomonaco and Kauffman introduced the knot mosaic system to give a definition of the quantum knot system that is intended to represent an actual physical quantum system. Recently the authors developed an algorithm producing the exact enumeration of knot mosaics, which uses a recursion formula of state matrices. As a sequel to this research program, we similarly define the (embedded) graph mosaic system by using 16 graph mosaic tiles, representing graph diagrams with vertices of valence 3 and 4. We extend the algorithm to produce the exact number of all graph mosaics. The magnified state matrix that is an extension of the state matrix is mainly used.

이 페이지에서 제공하는 정보에 대해 만족하십니까?