본문 바로가기 주메뉴 바로가기
검색 검색영역닫기 검색 검색영역닫기 ENGLISH 메뉴 전체보기 메뉴 전체보기

논문

Basic Principles and Practical Applications of the Cahn-Hilliard Equation

http://dx.doi.org/10.1155/2016/9532608

  • 저자Junseok Kim, Seunggyu Lee,Yongho Choi,Seok-Min Lee and Darae Jeong
  • 학술지Mathematical Problems in Engineering 2016(9532608)
  • 등재유형
  • 게재일자(2016)

The celebrated Cahn–Hilliard (CH) equation was proposed to model the process of phase separation in binary alloys by Cahn and Hilliard. Since then the equation has been extended to a variety of chemical, physical, biological, and other engineering fields such as spinodal decomposition, diblock copolymer, image inpainting, multiphase fluid flows, microstructures with elastic inhomogeneity, tumor growth simulation, and topology optimization. Therefore, it is important to understand the basic mechanism of the CH equation in each modeling type. In this paper, we review the applications of the CH equation and describe the basic mechanism of each modeling type with helpful references and computational simulation results.

The celebrated Cahn–Hilliard (CH) equation was proposed to model the process of phase separation in binary alloys by Cahn and Hilliard. Since then the equation has been extended to a variety of chemical, physical, biological, and other engineering fields such as spinodal decomposition, diblock copolymer, image inpainting, multiphase fluid flows, microstructures with elastic inhomogeneity, tumor growth simulation, and topology optimization. Therefore, it is important to understand the basic mechanism of the CH equation in each modeling type. In this paper, we review the applications of the CH equation and describe the basic mechanism of each modeling type with helpful references and computational simulation results.

이 페이지에서 제공하는 정보에 대해 만족하십니까?