본문 바로가기 주메뉴 바로가기
검색 검색영역닫기 검색 검색영역닫기 ENGLISH 메뉴 전체보기 메뉴 전체보기

논문

On the infinite products derived from theta series II

https://doi.org/10.4134/JKMS.2008.45.5.1379

  • 저자김대열
  • 학술지Journal of the Korean Mathematical Society 45/5
  • 등재유형
  • 게재일자(2008)


Let k be an imaginary quadratic field, the complex upper half plane, and let tau is an element of h boolean AND k, q = e(pi it). For n, t is an element of Z(+) with 1 <= t <= n-1, set n = z.2(t) (z = 2, 3, 5, 7, 9, 13, 15) with l >= 0 integer. Then we show that q (n/12 - t/2 + t2/2n) Pi(infinity)(m=1) (1 - q(nm-t)) (1 - q(nm-(n-t))) are algebraic numbers.


Let k be an imaginary quadratic field, the complex upper half plane, and let tau is an element of h boolean AND k, q = e(pi it). For n, t is an element of Z(+) with 1 <= t <= n-1, set n = z.2(t) (z = 2, 3, 5, 7, 9, 13, 15) with l >= 0 integer. Then we show that q (n/12 - t/2 + t2/2n) Pi(infinity)(m=1) (1 - q(nm-t)) (1 - q(nm-(n-t))) are algebraic numbers.

이 페이지에서 제공하는 정보에 대해 만족하십니까?