본문 바로가기 주메뉴 바로가기
검색 검색영역닫기 검색 검색영역닫기 ENGLISH 메뉴 전체보기 메뉴 전체보기

논문

Analysis and discretization of an optimal control problem for the forced Fisher equation

https://doi.org/10.3934/dcdsb.2007.8.569

  • 저자Sung-Dae Yang,Max Gunzburger,Wenxiang Zhu
  • 학술지Discrete and Continuous Dynamical Systems - Series B 8/3
  • 등재유형
  • 게재일자(2007)


An optimal control problem for the forced Fisher equation is considered. The control is an artificially introduced genotype and the objective is to match, as well as possible, a specified gene frequency. The existence of a solution of the optimal control problem is proved and an optimality system is derived through the Lagrange multiplier technique. Numerical approximations of the optimality system are defined using finite element methods to effect spatial discretization and a backward Euler method for the time discretiza- tion. Convergence of semi-discrete in time approximations of the state system is proved and a gradient method for solving the nonlinear discrete systems is developed. The results of some preliminary computational experiments are provided.


An optimal control problem for the forced Fisher equation is considered. The control is an artificially introduced genotype and the objective is to match, as well as possible, a specified gene frequency. The existence of a solution of the optimal control problem is proved and an optimality system is derived through the Lagrange multiplier technique. Numerical approximations of the optimality system are defined using finite element methods to effect spatial discretization and a backward Euler method for the time discretiza- tion. Convergence of semi-discrete in time approximations of the state system is proved and a gradient method for solving the nonlinear discrete systems is developed. The results of some preliminary computational experiments are provided.

이 페이지에서 제공하는 정보에 대해 만족하십니까?