본문 바로가기 주메뉴 바로가기
검색 검색영역닫기 검색 검색영역닫기 ENGLISH 메뉴 전체보기 메뉴 전체보기

논문

Generalization of characterizations of the trigonometric functions

https://doi.org/10.1017/S0305004106009455

  • 저자Y.-S. CHUNG and S.-Y. CHUNG,J.-H. KIM
  • 학술지Math. Proc. Cambridge Philos. Soc. 141/3
  • 등재유형
  • 게재일자(2006)


Suppose that $P(D)$ is a linear differential operator with complex coefficients and $\{f_k\}_{k \in \mathbb{Z}}$ is a two-sided sequence of complex-valued functions on $\mathbb{R}$ such that $f_{k+1} \,{=}\, P(D)f_k$ with the following growth condition: there exist $a\,{\in}\,[0,1)$ and $N\,{\geq}\,0$ such that $|f_k(x)|\,{\leq}\,M_{|k|}\exp (N|x|^a)$, where the sequence $\{M_k\}_{k=0}^{\infty}$ satisfies that for any $\varepsilon\,{>}\,0$, the sequence $\{{M_k}/{(1+\varepsilon)^{k}}\}_{k=0}^{\infty}$ has a bounded subsequence. Then $f_0$ is an entire function of an exponential growth. This result is a generalization of those of Roe, Burkill and Howard.


Suppose that $P(D)$ is a linear differential operator with complex coefficients and $\{f_k\}_{k \in \mathbb{Z}}$ is a two-sided sequence of complex-valued functions on $\mathbb{R}$ such that $f_{k+1} \,{=}\, P(D)f_k$ with the following growth condition: there exist $a\,{\in}\,[0,1)$ and $N\,{\geq}\,0$ such that $|f_k(x)|\,{\leq}\,M_{|k|}\exp (N|x|^a)$, where the sequence $\{M_k\}_{k=0}^{\infty}$ satisfies that for any $\varepsilon\,{>}\,0$, the sequence $\{{M_k}/{(1+\varepsilon)^{k}}\}_{k=0}^{\infty}$ has a bounded subsequence. Then $f_0$ is an entire function of an exponential growth. This result is a generalization of those of Roe, Burkill and Howard.

이 페이지에서 제공하는 정보에 대해 만족하십니까?