본문 바로가기 주메뉴 바로가기
검색 검색영역닫기 검색 검색영역닫기 ENGLISH 메뉴 전체보기 메뉴 전체보기

논문

Compact adjoint operators and approximation properties

https://doi.org/10.1016/j.jmaa.2006.04.022

  • 저자Ju Myung Kim
  • 학술지Journal of Mathematical Analysis and Applications 327
  • 등재유형
  • 게재일자(2007)

This paper is concerned with the space of all compact adjoint operators from dual spaces of Banach spaces into dual spaces of Banach spaces and approximation properties. For some topology on the space of all bounded linear operators from separable dual spaces of Banach spaces into dual spaces of Banach spaces, it is shown that if a bounded linear operator is approximated by a net of compact adjoint operators, then the operator can be approximated by a sequence of compact adjoint operators whose operator norms are less than or equal to the operator norm of the operator. Also we obtain applications of the theory and, in particular, apply the theory to approximation properties.

This paper is concerned with the space of all compact adjoint operators from dual spaces of Banach spaces into dual spaces of Banach spaces and approximation properties. For some topology on the space of all bounded linear operators from separable dual spaces of Banach spaces into dual spaces of Banach spaces, it is shown that if a bounded linear operator is approximated by a net of compact adjoint operators, then the operator can be approximated by a sequence of compact adjoint operators whose operator norms are less than or equal to the operator norm of the operator. Also we obtain applications of the theory and, in particular, apply the theory to approximation properties.

이 페이지에서 제공하는 정보에 대해 만족하십니까?