The coherent states for a system of time-dependent singular potentials coupled to inverted CK (Caldirola–Kanai) oscillator are investigated by employing invariant operator method and Lie algebraic approach. We considered Coulomb potential and inverse quadratic potential as singularities of the system. The spectrum of quantum states is discrete for λ < 0 while continuous for λ ? 0. The probability densities for both Fock state and coherent state are converged to the center as time goes by according to the dissipation of energy. We confirmed that the probability density in the coherent state oscillates back and forth like a classical wave packet.
The coherent states for a system of time-dependent singular potentials coupled to inverted CK (Caldirola–Kanai) oscillator are investigated by employing invariant operator method and Lie algebraic approach. We considered Coulomb potential and inverse quadratic potential as singularities of the system. The spectrum of quantum states is discrete for λ < 0 while continuous for λ ? 0. The probability densities for both Fock state and coherent state are converged to the center as time goes by according to the dissipation of energy. We confirmed that the probability density in the coherent state oscillates back and forth like a classical wave packet.