This paper is concerned with the approximation property which is an important property in Banach space theory. We show that a Banach space X has the approximation property if (and only if), for every Banach space Y, the set of finite rank operators from X to Y is dense in the corresponding space of compact operators, in the usual topology of uniform convergence on compact sets.
This paper is concerned with the approximation property which is an important property in Banach space theory. We show that a Banach space X has the approximation property if (and only if), for every Banach space Y, the set of finite rank operators from X to Y is dense in the corresponding space of compact operators, in the usual topology of uniform convergence on compact sets.