Uncertainty relations for the time-dependent singular oscillator in the number state and in the coherent state are investigated. We applied our developement to the Caldirola–Kanai oscillator perturbed by a singularity. For this system, the variation (Δx) decreased exponentially while (Δp) increased exponentially with time both in the number and in the coherent states. As k → 0 and χ → 0, the number state uncertainty relation in the ground state becomes 0.583216? which is somewhat larger than that of the standard harmonic oscillator, ?/2. On the other hand, the uncertainty relation in all excited states become smaller than that of the standard harmonic oscillator with the same quantum number n. However, as k → ∞ and χ → 0, the uncertainty relations of the system approach the uncertainty relations of the standard harmonic oscillator, (n+1/2)?.
Uncertainty relations for the time-dependent singular oscillator in the number state and in the coherent state are investigated. We applied our developement to the Caldirola–Kanai oscillator perturbed by a singularity. For this system, the variation (Δx) decreased exponentially while (Δp) increased exponentially with time both in the number and in the coherent states. As k → 0 and χ → 0, the number state uncertainty relation in the ground state becomes 0.583216? which is somewhat larger than that of the standard harmonic oscillator, ?/2. On the other hand, the uncertainty relation in all excited states become smaller than that of the standard harmonic oscillator with the same quantum number n. However, as k → ∞ and χ → 0, the uncertainty relations of the system approach the uncertainty relations of the standard harmonic oscillator, (n+1/2)?.