본문 바로가기 메뉴바로가기

Papers

Interactive emotional content communications system using portable wireless biofeedback device

https://doi.org/10.1109/TCE.2011.6131173

  • AuthorDong Keun Kim; Jonghwa Kim; Eui Chul Lee; Mincheol Whang; Yongjoo Cho
  • JournalIEEE Transactions on Consumer Electronics 57 (2011
  • Link https://doi.org/10.1109/TCE.2011.6131173
  • Classification of papersSCI


In this paper, we implemented an interactive emotional content communication system using a portable wireless biofeedback device to support convenient emotion recognition and immersive emotional content representation for users. The newly designed system consists of the portable wireless biofeedback device and a novel emotional content rendering system. The former performs the acquisition and transmission of three different physiological signals (photoplethysmography, skin temperature, and galvanic skin response) to the remote emotional content rendering system via Bluetooth links in real time. The latter displays video content concurrently manipulated using the feedback of the user¿s emotional state. The results of effectiveness of the system indicated that the response time of the emotional content communication system was nearly instant, the changes of between emotional contents and emotional states base on physiological signals was corresponded. The user¿s concentration was increased by watching the measuredemotion- based rendered visual stimuli. In the near future, the users of this proposed system will be able to create further substantial user-oriented content based on emotional changes.


In this paper, we implemented an interactive emotional content communication system using a portable wireless biofeedback device to support convenient emotion recognition and immersive emotional content representation for users. The newly designed system consists of the portable wireless biofeedback device and a novel emotional content rendering system. The former performs the acquisition and transmission of three different physiological signals (photoplethysmography, skin temperature, and galvanic skin response) to the remote emotional content rendering system via Bluetooth links in real time. The latter displays video content concurrently manipulated using the feedback of the user¿s emotional state. The results of effectiveness of the system indicated that the response time of the emotional content communication system was nearly instant, the changes of between emotional contents and emotional states base on physiological signals was corresponded. The user¿s concentration was increased by watching the measuredemotion- based rendered visual stimuli. In the near future, the users of this proposed system will be able to create further substantial user-oriented content based on emotional changes.