본문 바로가기 메뉴바로가기

Papers

CoReHA 2.0: A Software package for In-Vivo MREIT Experiments

http://dx.doi.org/10.1155/2013/941745


Magnetic resonance electrical impedance tomography (MREIT) is a new medical imaging modality visualizing static conductivity images of electrically conducting subjects. Recently, MREIT has rapidly progressed in its theory, algorithm, and experiment technique and now reached to the stage of in vivo animal experiments. In this paper, we present a software, named CoReHA 2.0 standing for the second version of conductivity reconstructor using harmonic algorithms, to facilitate in vivo MREIT reconstruction of conductivity image. This software offers various computational tools including preprocessing of MREIT data, identification of 2D geometry of the imaging domain and electrode positions, and reconstruction of cross-sectional scaled conductivity images from MREIT data. In particular, in the new version, we added several tools including ramp-preserving denoising, harmonic inpainting, and local harmonic undefinedundefined algorithm to deal with data from in vivo experiments. The presented software will be useful to researchers in the field of MREIT for simulation, validation, and further technical development.


Magnetic resonance electrical impedance tomography (MREIT) is a new medical imaging modality visualizing static conductivity images of electrically conducting subjects. Recently, MREIT has rapidly progressed in its theory, algorithm, and experiment technique and now reached to the stage of in vivo animal experiments. In this paper, we present a software, named CoReHA 2.0 standing for the second version of conductivity reconstructor using harmonic algorithms, to facilitate in vivo MREIT reconstruction of conductivity image. This software offers various computational tools including preprocessing of MREIT data, identification of 2D geometry of the imaging domain and electrode positions, and reconstruction of cross-sectional scaled conductivity images from MREIT data. In particular, in the new version, we added several tools including ramp-preserving denoising, harmonic inpainting, and local harmonic undefinedundefined algorithm to deal with data from in vivo experiments. The presented software will be useful to researchers in the field of MREIT for simulation, validation, and further technical development.