본문 바로가기 메뉴바로가기

Papers

Period and toroidal knot mosaics

https://doi.org/10.1142/S0218216517500316

  • Research Fields산업수학센터
  • AuthorSeungsang Oh, Kyungpyo Hong, Ho Lee, Hwa Jeong Lee and Mi Jeong Yeon
  • JournalJournal of Knot Theory and Its Ramifications 26(5) (2017
  • Link https://doi.org/10.1142/S0218216517500316
  • Classification of papersSCI
  • KeywordQuantum knot; knot mosaic; toroidal mosaic

not mosaic theory was introduced by Lomonaco and Kauffman in the paper on ‘Quantum knots and mosaics’ to give a precise and workable definition of quantum knots, intended to represent an actual physical quantum system. A knot (m,n)-mosaic is an m×n matrix whose entries are eleven mosaic tiles, representing a knot or a link by adjoining properly. In this paper, we introduce two variants of knot mosaics: period knot mosaics and toroidal knot mosaics, which are common features in physics and mathematics. We present an algorithm producing the exact enumeration of period knot (m,n)-mosaics for any positive integers m and n, toroidal knot (m,n)-mosaics for co-prime integers m and n, and furthermore toroidal knot (p,p)-mosaics for a prime number p. We also analyze the asymptotics of the growth rates of their cardinality.

not mosaic theory was introduced by Lomonaco and Kauffman in the paper on ‘Quantum knots and mosaics’ to give a precise and workable definition of quantum knots, intended to represent an actual physical quantum system. A knot (m,n)-mosaic is an m×n matrix whose entries are eleven mosaic tiles, representing a knot or a link by adjoining properly. In this paper, we introduce two variants of knot mosaics: period knot mosaics and toroidal knot mosaics, which are common features in physics and mathematics. We present an algorithm producing the exact enumeration of period knot (m,n)-mosaics for any positive integers m and n, toroidal knot (m,n)-mosaics for co-prime integers m and n, and furthermore toroidal knot (p,p)-mosaics for a prime number p. We also analyze the asymptotics of the growth rates of their cardinality.