본문 바로가기 메뉴바로가기

Papers

A Study on the Topological Derivative-based Imaging of Thin Electromagnetic Inhomogeneities in Limited-Aperture Problems

  • AuthorChi Young Ahn, Kiwan Jeon, Yong-Ki Ma, and Won-Kwang Park
  • JournalInverse Problems 30 (2014
  • Classification of papersSCI
The topological derivative-based non-iterative imaging algorithm has demonstrated its applicability in limited-aperture inverse scattering problems. However, this has been confirmed through many experimental simulation results, and the reason behind this applicability has not been satisfactorily explained. In this paper, we identify the mathematical structure and certain properties of topological derivatives for the imaging of two-dimensional crack-like thin penetrable electromagnetic inhomogeneities that are completely embedded in a homogeneous material. To this end, we establish a relationship with an infinite series of Bessel functions of integer order of the first kind. Based on the derived structure, we discover a necessary condition for applying topological derivatives in limited-aperture inverse scattering problems, and thus confirm why topological derivatives can be applied. Furthermore, we analyze the structure of multi-frequency topological derivative, and identify why this improves the single-frequency topological derivative in limited-aperture inverse scattering problems. Various numerical simulations are conducted with noisy data, and the results support the derived structure and exhibit certain properties of single- and multi-frequency topological derivatives.
The topological derivative-based non-iterative imaging algorithm has demonstrated its applicability in limited-aperture inverse scattering problems. However, this has been confirmed through many experimental simulation results, and the reason behind this applicability has not been satisfactorily explained. In this paper, we identify the mathematical structure and certain properties of topological derivatives for the imaging of two-dimensional crack-like thin penetrable electromagnetic inhomogeneities that are completely embedded in a homogeneous material. To this end, we establish a relationship with an infinite series of Bessel functions of integer order of the first kind. Based on the derived structure, we discover a necessary condition for applying topological derivatives in limited-aperture inverse scattering problems, and thus confirm why topological derivatives can be applied. Furthermore, we analyze the structure of multi-frequency topological derivative, and identify why this improves the single-frequency topological derivative in limited-aperture inverse scattering problems. Various numerical simulations are conducted with noisy data, and the results support the derived structure and exhibit certain properties of single- and multi-frequency topological derivatives.