It is shown that the path topology of Hawking, King, and McCarthy can be extended to the causal completion of a globally hyperbolic Lorentzian manifold. The suggested topology T is defined only in terms of chronological structures and T is finer than the?
It is shown that the path topology of Hawking, King, and McCarthy can be extended to the causal completion of a globally hyperbolic Lorentzian manifold. The suggested topology T is defined only in terms of chronological structures and T is finer than the?