2014년도 세계 수학자 대회 ICM 개최 이후, 한국은 수학의 연구와 교육에 있어서 전세계의 중심국가 중 하나로서의 위치를 공고히 하는 것이 중요한 과제로 떠오를 것이다. 우리는 국제적으로 연구 학교 (research school)을 개최함으로서 그 과제에 기여하려고 한다.
본 연구 학교의 목적은 수학 연구를 시작하는 대학원 초년생 혹은 학부 4학년 학생들에게 구체적인 예들을 통해, 현대 수학의 큰 세부분야인 동역학계의 연구 방법론과 현대 기하학의 문제들을 소개하고 친숙해 지도록 하는데 있다.
천체 물체들의 운동을 이해하는 것은 인류의 오랜 꿈이다. 케플러 이래 2-체 문제 (two body problem)는 완전히 풀렸지만, 3-체 문제는 모든 시간에 대해 기술하는 닫힌 방정식을 찾는 것이 불가능하다. 포앙카레의 결과로 우리는 3-체 문제가 아주 작은 섭동에 대해 큰 혼돈 (choas)이 야기된다는 것을 알게 되었다. 하지만 포앙카레는 주기적인 궤도가 해밀톤 시스템의 동역학의 기본이됨을 발견하였다.
이렇든 3-체 문제는 역사가 긴 문제이지만, 최근의 사교기하학의 현대적인 방법론이 대두되면서,다시 각광을 받게 되었다. 그로모프의 (pseudo-holomorphic curves)의 도입으로 사교 위상수학은 우리의 해밀톤 동역학의 이해에 혁명적인 변화를 일으켰다. 이에 플로어 호몰로지(Floerhomology), 사교 장 이로, 푸카야 A-무한 (A-infinity) 카테고리 등의 중요한 개념들의 발견이 뒤따랐다. 제한된 3-체 문제의 분석에 있어서의 최근의 발전은, 본 연구 학교의 강연자 및 주관자 중 두 명이 활발히 관여한 연구인데, 이러한 새로운 광역적인 방법론이, 섭동(perturbation)이라는 국소적인 방법론과는 완전히 새로운 접근법을 가져다 주는지 보여주었다.
우리는 기하학과 동역학을 구체적인 예를 통해 소개하고 그 둘 사이의 상호작용을 강조함으로써,학생들이 두 이론을 각각 이해할 뿐만 아니라 서로 다른 수학적 이론들이 상호작용하고 서로를 풍부하게 해주는 지를 보게 될 것으로 기대한다. 또한 우리의 강의들은 간단하고 추상적인 개념들이 어떻게 응용되는지를 보여줄 것이다.
Conference Information
본 연구 학교의 목표는 학생들에게 동역학계의 기본적인 질문들과 이를 해결하기 위해 필요한 이론들을 구체적인 문제들을 통해 소개하는 것이다.
우리의 기본적인 질문들은 다음과 같다 : 닫힌 궤도의 존재성 (existence of closed orbits), 적분성(integrability 완전 해결성 complete solvability), 안정성 (stability). 그리고 우리의 기본적인 방법들은 다음과 같다 : 기하화 (geometrization)와 variational principles.이러한 질문과 방법들을 다음과 같은 구체적인 예들에 대해 적용하고자 한다 : 빌리어드 billiards, 측지선 흐름과 자기적 흐름 geodesic and magnetic flows, 그리고 3체 문제 3-body problem. 또다른 목적은 이러한 질문과 방법들, 그리고 예들이 무미건조한 추상적인 수학이 아닌, 역학, 기하학적 광학, 천체물리학 등에 등장하는 구체적인 예들과 질문들임을 보여주려고 한다.