본문 바로가기 주메뉴 바로가기
검색 검색영역닫기 검색 검색영역닫기 ENGLISH 메뉴 전체보기 메뉴 전체보기

학술행사

세미나

ICIM 연구교류 세미나(3.27.목)

등록일자 : 2025-03-18

https://www.nims.re.kr/icim/post/event/1099

  • 발표자  김재경 교수(카이스트)​
  • 개최일시  2025-03-27 13:00-15:00
  • 장소  국가수리과학연구소 산업수학혁신센터(판교)

유튜브 스트리밍 예정입니다.

  1. 일시: 2025년 3월 27일(목), 13:00-15:00​
  2. 장소: 판교 테크노밸리 산업수학혁신센터 세미나실​
  3. 경기 성남시 수정구 대왕판교로 815, 기업지원허브 231호 국가수리과학연구소 / 무료주차는 2시간 지원됩니다.​
  4. 발표자: 김재경 교수(카이스트)​
  5. 주제: Advancing Static and Time-series data: Random Matrix Theory, Causal Inference and Mathematical Modeling​In this talk, I will discuss methods for extracting meaningful information from static and time-series data. For static data, Principal Component Analysis (PCA) is widely used to detect signals in noisy datasets. However, determining the appropriate number of signals often relies on subjective judgment. I will introduce an approach based on random matrix theory to objectively select the optimal number of signals. For time-series data, causal inference techniques such as Granger causality are commonly employed. Unfortunately, these methods often yield high false-positive rates. I will present a novel mathematical model-based approach to causal inference. Finally, I will talk about how to use mathematical modelign approach to analyze time-series data with an example of wearable data.

유튜브 스트리밍 예정입니다.

  1. 일시: 2025년 3월 27일(목), 13:00-15:00​
  2. 장소: 판교 테크노밸리 산업수학혁신센터 세미나실​
  3. 경기 성남시 수정구 대왕판교로 815, 기업지원허브 231호 국가수리과학연구소 / 무료주차는 2시간 지원됩니다.​
  4. 발표자: 김재경 교수(카이스트)​
  5. 주제: Advancing Static and Time-series data: Random Matrix Theory, Causal Inference and Mathematical Modeling​In this talk, I will discuss methods for extracting meaningful information from static and time-series data. For static data, Principal Component Analysis (PCA) is widely used to detect signals in noisy datasets. However, determining the appropriate number of signals often relies on subjective judgment. I will introduce an approach based on random matrix theory to objectively select the optimal number of signals. For time-series data, causal inference techniques such as Granger causality are commonly employed. Unfortunately, these methods often yield high false-positive rates. I will present a novel mathematical model-based approach to causal inference. Finally, I will talk about how to use mathematical modelign approach to analyze time-series data with an example of wearable data.

이 페이지에서 제공하는 정보에 대해 만족하십니까?