본문 바로가기 주메뉴 바로가기
검색 검색영역닫기 검색 검색영역닫기 ENGLISH 메뉴 전체보기 메뉴 전체보기

학술행사

세미나

ICIM 연구교류 세미나(1.21.화)

등록일자 : 2025-01-13

https://www.nims.re.kr/icim/post/event/1093

  • 발표자  박준서 (고등과학원)
  • 개최일시  2025-01-21 10:30-12:30
  • 장소  국가수리과학연구소 산업수학혁신센터(판교)
  1. 일시: 2025년 1월 21일(화), 10:30-12:30

  2. 장소: 판교 테크노밸리 산업수학혁신센터 세미나실

  3. 경기 성남시 수정구 대왕판교로 815, 기업지원허브 231호 국가수리과학연구소 / 무료주차는 2시간 지원됩니다.

  4. 발표자: 박준서 (고등과학원)

  5. 주제: tLaSDI: Thermodynamics-informed latent space dynamics identification

We propose a latent space dynamics identification method, namely tLaSDI, that embeds the first and second principles of thermodynamics. The latent variables are learned through an autoencoder as a nonlinear dimension reduction model. The latent dynamics are constructed by a neural network-based model that precisely preserves certain structures for the thermodynamic laws through the GENERIC formalism. An abstract error estimate is established, which provides a new loss formulation involving the Jacobian computation of autoencoder. The autoencoder and the latent dynamics are simultaneously trained to minimize the new loss. Computational examples demonstrate the effectiveness of tLaSDI, which exhibits robust generalization ability, even in extrapolation. In addition, an intriguing correlation is empirically observed between a quantity from tLaSDI in the latent space and the behaviors of the full-state solution.

  1. 일시: 2025년 1월 21일(화), 10:30-12:30

  2. 장소: 판교 테크노밸리 산업수학혁신센터 세미나실

  3. 경기 성남시 수정구 대왕판교로 815, 기업지원허브 231호 국가수리과학연구소 / 무료주차는 2시간 지원됩니다.

  4. 발표자: 박준서 (고등과학원)

  5. 주제: tLaSDI: Thermodynamics-informed latent space dynamics identification

We propose a latent space dynamics identification method, namely tLaSDI, that embeds the first and second principles of thermodynamics. The latent variables are learned through an autoencoder as a nonlinear dimension reduction model. The latent dynamics are constructed by a neural network-based model that precisely preserves certain structures for the thermodynamic laws through the GENERIC formalism. An abstract error estimate is established, which provides a new loss formulation involving the Jacobian computation of autoencoder. The autoencoder and the latent dynamics are simultaneously trained to minimize the new loss. Computational examples demonstrate the effectiveness of tLaSDI, which exhibits robust generalization ability, even in extrapolation. In addition, an intriguing correlation is empirically observed between a quantity from tLaSDI in the latent space and the behaviors of the full-state solution.

이 페이지에서 제공하는 정보에 대해 만족하십니까?