본문 바로가기 주메뉴 바로가기
검색 검색영역닫기 검색 검색영역닫기 ENGLISH 메뉴 전체보기 메뉴 전체보기

학술행사

세미나

ICIM 연구교류 세미나(4.2.화)

등록일자 : 2024-03-14

https://icim.nims.re.kr/post/event/1066

  • 발표자  최재웅 박사(고등과학원 AI 기초과학센터)
  • 개최일시  2024-04-02 14:00-16:00


1. 장소: 판교 테크노밸리 산업수학혁신센터 세미나실

2. 경기 성남시 수정구 대왕판교로 815, 기업지원허브 231호 국가수리과학연구소

3. 무료주차는 2시간 지원됩니다.

4. 주요내용: Generative Modeling through Optimal Transport


Optimal Transport (OT) problem investigates a transport map that bridges two distributions while minimizing a specified cost function. OT theory has been widely utilized in generative modeling. Initially, the OT-based Wasserstein metric served as a measure for assessing the distance between data and generated distributions. More recently, the OT transport map, connecting data and prior distributions, has emerged as a new approach for generative models. In this talk, we will introduce generative models based on Optimal Transport. Specifically, we will present our work on a generative model utilizing Unbalanced Optimal Transport. We will also discuss our subsequent efforts to address the challenges associated with this approach.



1. 장소: 판교 테크노밸리 산업수학혁신센터 세미나실

2. 경기 성남시 수정구 대왕판교로 815, 기업지원허브 231호 국가수리과학연구소

3. 무료주차는 2시간 지원됩니다.

4. 주요내용: Generative Modeling through Optimal Transport


Optimal Transport (OT) problem investigates a transport map that bridges two distributions while minimizing a specified cost function. OT theory has been widely utilized in generative modeling. Initially, the OT-based Wasserstein metric served as a measure for assessing the distance between data and generated distributions. More recently, the OT transport map, connecting data and prior distributions, has emerged as a new approach for generative models. In this talk, we will introduce generative models based on Optimal Transport. Specifically, we will present our work on a generative model utilizing Unbalanced Optimal Transport. We will also discuss our subsequent efforts to address the challenges associated with this approach.


이 페이지에서 제공하는 정보에 대해 만족하십니까?