본문 바로가기 주메뉴 바로가기
검색 검색영역닫기 검색 검색영역닫기 ENGLISH 메뉴 전체보기 메뉴 전체보기

학술행사

콜로퀴움

Graph Learning vs. Graph Filtering

등록일자 : 2024-03-05

https://icim.nims.re.kr/post/event/1064

  • 발표자  신원용 교수,연세대학교
  • 조직위원  산업수학혁신센터
  • 기간  2024-03-28 ~ 2024-03-28
  • 장소  판교 테크노밸리 산업수학혁신센터 세미나실
  • 주최  산업수학혁신센터


  1. 일시: 2024.3.28.(목), 14:00~16:00

  2. 장소: 판교 테크노밸리 산업수학혁신센터 세미나실

    • 경기 성남시 수정구 대왕판교로 815, 기업지원허브 231호 국가수리과학연구소
    • 무료주차는 2시간 지원됩니다.
  3. 발표자: 신원용 교수(연세대학교)

  4. 주요내용: Graph Learning vs. Graph Filtering

In the graph signal processing perspective, a series of graph filtering is shown to exhibit state-of-the-art performance with a substantially low computational complexity. This talk aims to bridge between graph filtering and graph learning. In the first part of this talk, I explain how the basic mechanism of the well-known graph convolutional network (GCN) is interpreted as graph filters. In the second part of this talk, I introduce graph filtering methods using a low-pass filter without a costly model training process. More specifically, I present graph filtering-based collaborative filtering approaches that do not require training for recommender systems. Finally, I discuss how such methodology is applicable to a broad spectrum of real-world recommendation domains.

*유튜브 스트리밍 예정입니다.


  1. 일시: 2024.3.28.(목), 14:00~16:00

  2. 장소: 판교 테크노밸리 산업수학혁신센터 세미나실

    • 경기 성남시 수정구 대왕판교로 815, 기업지원허브 231호 국가수리과학연구소
    • 무료주차는 2시간 지원됩니다.
  3. 발표자: 신원용 교수(연세대학교)

  4. 주요내용: Graph Learning vs. Graph Filtering

In the graph signal processing perspective, a series of graph filtering is shown to exhibit state-of-the-art performance with a substantially low computational complexity. This talk aims to bridge between graph filtering and graph learning. In the first part of this talk, I explain how the basic mechanism of the well-known graph convolutional network (GCN) is interpreted as graph filters. In the second part of this talk, I introduce graph filtering methods using a low-pass filter without a costly model training process. More specifically, I present graph filtering-based collaborative filtering approaches that do not require training for recommender systems. Finally, I discuss how such methodology is applicable to a broad spectrum of real-world recommendation domains.

*유튜브 스트리밍 예정입니다.

이 페이지에서 제공하는 정보에 대해 만족하십니까?