본문 바로가기 주메뉴 바로가기
검색 검색영역닫기 검색 검색영역닫기 ENGLISH 메뉴 전체보기 메뉴 전체보기

학술행사

콜로퀴움

Spectral theory of Neumann-Poincare operator and applications

등록일자 : 2015-05-15
  • 발표자  강현배 교수(인하대학교)
  • 기간  2015-05-22 ~
  • 장소  국가수리과학연구소 3층 세미나실

Spectral theory of Neumann-Poincare operator and applications. 자세한 내용은 본문 참조


NIMS  Colloquium

Spectral theory of Neumann-Poincare Operator and applications

연사 : 강현배 교수(인하대학교)
일시 : 2015년 5월 22일(금) 16:30
장소 : 국가수리과학연구소 3층 세미나실


Abstract

The Neumann-Poincare (NP) operator is a boundary integral operator which arises naturally when solving boundary value problems using layer potentials. It is not self-adjoint with the usual inner product. But it can symmetrized by introducing a new inner product on H−1/2 spaces using Plemelj's symmetrizationprinciple. Recently many nteresting spectral properties of the NP operator have been discovered. I will discuss about this development and various applications including solvability of PDEs with complex coefficients and plasmonicresonance.


Spectral theory of Neumann-Poincare operator and applications. 자세한 내용은 본문 참조


NIMS  Colloquium

Spectral theory of Neumann-Poincare Operator and applications

연사 : 강현배 교수(인하대학교)
일시 : 2015년 5월 22일(금) 16:30
장소 : 국가수리과학연구소 3층 세미나실


Abstract

The Neumann-Poincare (NP) operator is a boundary integral operator which arises naturally when solving boundary value problems using layer potentials. It is not self-adjoint with the usual inner product. But it can symmetrized by introducing a new inner product on H−1/2 spaces using Plemelj's symmetrizationprinciple. Recently many nteresting spectral properties of the NP operator have been discovered. I will discuss about this development and various applications including solvability of PDEs with complex coefficients and plasmonicresonance.


이 페이지에서 제공하는 정보에 대해 만족하십니까?