본문 바로가기 주메뉴 바로가기
검색 검색영역닫기 검색 검색영역닫기 ENGLISH 메뉴 전체보기 메뉴 전체보기

논문

Unpaired-Paired Learning for Shading Correction in Cone-Beam Computed Tomography

등록일자 :

https://doi.org/10.1109/ACCESS.2022.3155203

  • 저자JIN KEUN SEO,SANG-HWY LEE,박형석,전기완
  • 학술지IEEE Access (2169-3536), 10, 26140 ~ 26148
  • 등재유형SCIE
  • 게재일자 20220228
Cone-beam computed tomography (CBCT) is widely used in dental and maxillofacial imaging applications. However, CBCT suffers from shading artifacts owing to several factors, including photon scattering and data truncation. This paper presents a deep-learning-based method for eliminating the shading artifacts that interfere with the diagnostic and treatment processes.

이 페이지에서 제공하는 정보에 대해 만족하십니까?