본문 바로가기 주메뉴 바로가기
검색 검색영역닫기 검색 검색영역닫기 ENGLISH 메뉴 전체보기 메뉴 전체보기

논문

Multidimensional Open System for Valveless Pumping

https://doi.org/10.4134/BKMS.2015.52.6.1973

  • 저자JonggulLee (Eunok Jung, Do Wan, Kim, and Wanho Lee)
  • 학술지Bulletin of the Korean Mathematical Society 52
  • 등재유형
  • 게재일자(2015)


In this study, we present a multidimensional open system for valveless pumping (VP). This system consists of an elastic tube connected to two open tanks filled with a fluid under gravity. The two-dimensional elastic tube model is constructed based on the immersed boundary method, and the tank model is governed by a system of ordinary differential equations based on the work-energy principle. The flows into and out of the elastic tube are modeled in terms of the source/sink patches inside the tube. The fluid dynamics of this system is generated by the periodic compress-and-release action applied to an asymmetric region of the elastic tube. We have developed an algorithm to couple these partial differential equations and ordinary differential equations using the pressure-flow relationship and the linearity of the discretized Navier-Stokes equations. We have observed the most important feature of VP, namely, the existence of a unidirectional net flow in the system. Our computations are focused on the factors that strongly influence the occurrence of unidirectional flows, for example, the frequency, compression duration, and location of pumping. Based on these investigations, some case studies are performed to observe the details of the ow features.


In this study, we present a multidimensional open system for valveless pumping (VP). This system consists of an elastic tube connected to two open tanks filled with a fluid under gravity. The two-dimensional elastic tube model is constructed based on the immersed boundary method, and the tank model is governed by a system of ordinary differential equations based on the work-energy principle. The flows into and out of the elastic tube are modeled in terms of the source/sink patches inside the tube. The fluid dynamics of this system is generated by the periodic compress-and-release action applied to an asymmetric region of the elastic tube. We have developed an algorithm to couple these partial differential equations and ordinary differential equations using the pressure-flow relationship and the linearity of the discretized Navier-Stokes equations. We have observed the most important feature of VP, namely, the existence of a unidirectional net flow in the system. Our computations are focused on the factors that strongly influence the occurrence of unidirectional flows, for example, the frequency, compression duration, and location of pumping. Based on these investigations, some case studies are performed to observe the details of the ow features.

이 페이지에서 제공하는 정보에 대해 만족하십니까?